神计算姬,这次轮到你了。
    鲁教授顺着沈奇的目光扫视后排座位,锁定了欧叶“前面几位都是男生解题,接下来我们请一位女生上台,欧叶,请上台。”
    欧叶也不废话,起身上台,拿粉笔在黑板上解答。
    很快的,欧叶计算出结果,i1e2。
    “ok,欧叶你是基于什么思路计算出这个结果”鲁教授问到。
    欧叶答到“格林公式。”
    鲁教授追问“具体点,我需要细节,更多的细节。”
    欧叶无助的望向沈奇,不说话。
    沈奇知道不是欧叶不懂,而是她不善表达。
    沈奇站出来解围“d是由和1所围成的封闭曲线,可以计算出一个值e的平方减1,再由格林公式,最终得到i等于1减e的平方。这是我对欧叶思路的理解。”
    鲁教授问欧叶“你也是这么想的”
    欧叶点点头。
    鲁教授“那你自己为什么不说”
    欧叶“我会算,不会讲。”
    台下有学生笑了,这妹子有点意思,计算很犀利,说话不利索。
    “欧叶你先回座位吧,你的计算正确,语言表达能力还需要进一步强化。”鲁教授说到。
    “行了,最后一题。”
    鲁教授将黑板擦干净,画了个曲线图,提出问题,请证明2dx1xaarc11r1r
    此题一出,台下一片死寂。
    “最后一题,留给科学与工程计算系。”鲁教授看向邵天天。
    这次邵天天没有立即上台,他遭遇了困惑,他没有一点思路,不知道该如何证明。
    科学与工程计算系无一人挺身而出,装很轻松,装大逼靠的是顶级实力,没实力只能干瞪眼。
    “那数学系呢”鲁教授看向沈奇。
    沈奇站了起来,这次他不派小弟小妹出马了,他知道这题整个数学系能作出完整证明的人,估计只有他一个。如果有第二个,那就是欧叶,但这题的推导证明会很繁琐,以欧叶的语言表达风格,她讲三天三夜也讲不完证明思路。
    “沈奇你来”鲁教授问到。
    “我来。”沈奇上台,夹起一根新粉笔,在黑板上进行推导证明。
    “r和1r1分别是、1点处曲线的切线,那么,我作两个定积分的差”沈奇边写边说,边说边写。
    故arcqq1arc1q1s1qs1r1r
    “在椭圆上的处理,我用代数式表示无穷多段弧的差,那么,解析如下”
    xdxzdzhxzf
    “这题的证明相当麻烦呀,且容我想想。”沈奇写了半块黑板,稍作停顿。
    台下,包括邵天天、周雨安等被鲁教授誉为“年轻数学家”的优秀学生也看傻眼了,他们看不太懂沈奇的推导证明思路。
    鲁教授不露声色保持观望。
    “我想到了,在此我引用几何意义,令这个式子与积分一致,为椭圆的正焦弦”
    沈奇稍作思考后继续求证arcjdarcdg
    他的思路是令x0,则弧jd消失,在式7中的代数项也消失,所以dg弧变为da弧沈奇很快写满了一黑板。
    “很古老的证明方法,法尼亚诺定理,非常经典。”鲁教授能t到沈奇的推导核心思路,他有点意外,沈奇居然用这种途径进行证明。
    “所以,我再令咦,没地儿了。”沈奇写着写着发现,一整块黑板都被他写满了,再无余地。
    沈奇转身,将半截粉笔往黑板槽中一丢“我很确定这个等式是成立的,但黑板上空白处太少,写不下。”
    台下众人先是懵逼,随后醒悟,两三百年前,一位叫费马的法国业余数学家也是这么干的。
    “我很确定这个假设是成立的,但书上的空白处太少,写不下。”费马大定理就是这么来的,直到1995年才被怀尔斯证明成立。
    :

章节目录

我只想当一个安静的学霸所有内容均来自互联网,棋子小说网只为原作者术小城的小说进行宣传。欢迎各位书友支持术小城并收藏我只想当一个安静的学霸最新章节